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Abstract
Orthopedic tissues respond to mechanical loads 
to maintain normal homeostasis and in response 
to injury. As the body of work on this continues 
to grow, it is important to synthesize the recent 
studies across tissues and specialties with one 
another and with past studies. Hence, this review 
highlights the knowledge gained 
since 2000, with only few excep-
tions, concerning the effects of 
mechanical load and biologics on 
remodeling and repair of orthope-
dic tissue.

This review is separated into 
4 sections: tendon and liga-
ment, meniscus, cartilage, 
and bone. Each section begins 

with a brief anatomical description 
followed by discussions of remodel-
ing and repair and concludes with a 
concise presentation of information 
regarding repair enhancement through 
biologics. In addition to summariz-
ing recent work, this review provides 

insights for future directions and, through the combined 
discussion of mechanics and biologics, opportunities for 
translation to clinical use. This is Part I, which will dis-
cuss 1) tendon and ligament and 2) meniscus. Look for 
Part II (on cartilage and bone) in the March 2011 issue.

Tendon and Ligament

Anatomy
Tendons and ligaments are hierarchical 
structures primarily composed of col-
lagen I molecules bound together into 
fibrils. Fibrils generally are organized 
in parallel bundles, or fibers, which are 
grouped into fascicles that are the mac-
roscopic subunits of the tissue. Water, 
cells, proteoglycans, and other glyco-
proteins along with loose connective 
tissue make up the extrafibrillar matrix 
that allows relative sliding of collagen 
bundles and carries blood vessels and 
nerves throughout the tissue.1 While 
it is believed that the cells sparsely 
interspersed within the collagen fibers 
sense tissue strains and mediate tissue 
remodeling, the transfer of strain from 

the macroscopic to microscopic level is only partially 
understood.2 In addition, the structure, composition, and 
properties of both tendons and ligaments vary along their 
lengths (most notably at their bony insertions), across 
anatomical sites, and between each other.1

Remodeling
Research before the 21st century indicates that, like other 
orthopedic tissues, tendons and ligaments positively 
respond to moderate loading or activity levels, whereas 
disuse/immobilization or overloading tends to lead to 
pathology and deteriorated properties.3 Recent work 
generally supports these findings with more sophisticated 
measurement tools. For example, advances in imaging 
techniques and microdialysis have enabled interesting 
in vivo human studies of tendon remodeling. Multiple 
studies show that blood flow is significantly increased 
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to peritendinous tissue during and immediately fol-
lowing exercise in order to satisfy increases in local 
oxygen consumption.4 These changes are associated 
with further metabolic activity5, including increased 
intratendinous glucose uptake during exercise6 (Figure 
1) as well as increased collagen synthesis7 and proteo-
lytic activity for extended periods following exercise. 
Taken together, these data suggest that loading of tendon 
elevates tenocyte metabolism, potentially activating tis-
sue remodeling. In fact, numerous in vivo human studies 
using ultrasound and electromyography suggest that the 
end-effect may be increased tendon cross-sectional area, 
which may translate to increases in tendon stiffness.8 
Additional experiments demonstrate that improvements 
in tendon modulus are possible, especially in counter-
acting declines due to age9 and microgravity.10 Still, 
improvements in mechanical properties are not con-
sistently observed, suggesting that the optimal loading 
parameters remain unknown.

In addition to human data, animal studies have 
continued to refine our understanding of the underly-
ing mechanisms of mechanically induced remodeling. 
Excessive loading of rotator cuff tendons in the form 
of overuse can lead to histologic and mechanical 
degenerative changes,11 and these findings have sub-
sequently been correlated with increased expression 
of cartilaginous markers12; insulinlike growth factor 

1 (IGF-1);13 nitric oxide synthase;14 and angiogenic, 
inflammatory, and apoptotic factors15,16 (Figure 2). 
Other in vivo studies have similarly implicated load 
with decreased material properties and formation of 
microdamage17,18 along with upregulation of factors 
involved in angiogenesis, remodeling,19 pain, and 
inflammation.20 These data are supported by in vitro 
studies showing accumulation of microtears from 
subfailure cyclic loading21 as well as stretch-induced 
expression changes in myriad growth factors; inflam-
matory, pain, and apoptotic mediators; and prote-
ases.22-25 These observations match changes clinically 
associated with tendinopathy,26,27 thereby supporting 
theories of an overload etiology.

In contrast, there also is evidence that disuse can 
lead to pathologic degeneration.28 Immobilization and 
stress deprivation lead to mechanical deficiencies in 
the tendon proper and its insertion sites.29,30 Similar 
observations made in vitro31 seem to be mediated 
by a rapid and sustained increase in matrix metal-
loproteinase 3 (MMP-3) and MMP-13 activity with 
unloading.32 MMPs are a broad family of proteases 
capable of digesting various extracellular proteins, 
including collagen, with varying efficiencies and are 
counterbalanced by tissue inhibitors of metalloprotein-
ases (TIMPs).33 Gene analysis and protein quantifica-
tion studies show that MMPs and TIMPs are clearly 
regulated by mechanical loading, but their coordinate 
functions during tendon remodeling are complex and 
remain to be elucidated.34 Nevertheless, tendon unload-
ing seems to consistently upregulate MMP expression 
as well as decrease TIMP/MMP ratios, suggesting an 
overall catabolic tissue environment.35 These findings, 
together with the overuse data, suggest that both exces-
sive and diminished load levels lead to deleterious 
effects on tendons and ligaments and that an optimum 
load range exists to maintain healthy tissue.

The structural changes underlying the altered mechan-
ical properties seen with tendon remodeling in response 
to load are still unknown. Neither changes in total col-
lagen content3,31 nor fibril diameters36 conclusively cor-
relate with observed mechanical differences, indicating 
that more sensitive assays of tendon hierarchical com-
position are required to determine the structure–function 
relationships involved in tissue remodeling.

While most attention has been given to tension, com-
pressive loading has significant effects on tendons and 
ligaments as well. This is most evident in flexor tendons 
and tissues that wrap around bony structures, creating 
compressive regions of fibrocartilagenous composition. 
In fact, removal of these compressive loads through ten-
don translocation leads to drastic tissue remodeling.37 
Finally, there is growing evidence that load-induced 
fluid flow in tendon38 also may contribute to collagen 
fiber alignment and tissue remodeling.39

Remodeling and Repair of Orthopedic Tissue: Role of Mechanical Loading and Biologics

Figure 1. Positron emission tomography scans of the lower leg 
at the level of the Achilles tendon insertion into the calcaneus 
(A) and more proximally (B) demonstrate increased uptake 
of [18F]-2-fluoro-2-deoxy-D-glucose in the exercised (right 
images) versus resting leg (left images) immediately following 
voluntary plantar flexor contractions. Corresponding magnetic 
resonance imaging scans show locations of (C) the tendon 
insertion site (dark crescent shape at end of calcaneus) and 
(D) the tendon proper (dark oval at bottom).6 Reprinted with 
permission from American Physiological Society.



Repair
The effect of load on healing varies significantly with tis-
sue anatomy (eg, intrasynovial vs extrasynovial), injury site 
(eg, midsubstance vs insertion), and the particular healing 
phases during which the load is applied. In animal stud-
ies, structural properties are decreased after healing with 
immobilization or intramuscular botulinum toxin injection 
in the Achilles and supraspinatus tendons.40,41 Additionally, 
material and structural properties of healing ligament are 
worse with hindlimb unloading, which may be the result 
of diminished remodeling.42,43 In contrast to these findings, 
immobilization produces improved collagen organization 
and mechanical properties over cage activity and exercise in 
the rotator cuff insertion site.44 However, insertional repair 
on flexor digitorum profundus tendons exhibited improved 
structural and material properties with passive stretching45 
versus immobilization.

Results are similarly confusing when considering 
the effects of elevated loads. Exercise following immo-
bilized repair of the supraspinatus resulted in inferior 
mechanics,46 whereas in flexor tendons, which have a 
long history of improved repair with loading, increasing 
the level of force had no effect on mechanical proper-
ties of the repair.47 Furthermore, possible excessive 
loading of the healing medial collateral ligament due 
to a combined medial collateral/anterior cruciate liga-
ment reconstruction resulted in inferior repair tissue.48 
Still, mechanical load seems to provide a protective role 
against collagen degradation,49 possibly enabling more 
productive remodeling through preferential elimination 
of unstressed fibers.50 In the case of cyclic loading, fre-
quency may be important, as it is hypothesized to be the 
mechanism underlying the benefits of eccentric loading 
in physical therapy.51

In summary, as also seen in remodeling of normal tis-
sue, there is likely a “U”-shaped relationship between 
healing and mechanical loading. That is, both too little 
load and too much load appear to be detrimental to 

tendon healing, suggesting some moderate load will 
lead to optimal repair. However, the dynamics of the 
healing process and the significant differences between 
tissues and regions of even the same tissue seem to limit 
generalization of results and focus interpretations to the 
specific tissue being tested.

Biologic Enhancement
Repair enhancements have focused roughly on exogenous 
application of stem cells52 and the effects of various bio-
chemicals, such as cytokines, growth factors, and prote-
ases.53,54 There have been a small number of investigations 
into the interaction of these mediators with mechanical 
loading during healing. Insulinlike growth factor and growth 
hormone (GH) delivered systemically improved mechanical 
properties and collagen synthesis for both cage activity and 
hindlimb unloaded animals, with nearly full compensation 
of the deficits of unloading.55 Growth hormone increased 

collagen I synthesis in human tendon, and its effects were 
unaffected by moderate exercise,56 although in rats, GH 
treatment alone did not translate into improved repair prop-
erties.55 Furthermore, platelet-rich plasma has been used 
recently for repair augmentation,57 though fundamental data 
on its role remain limited. In rat Achilles tendon, mechanical 
loading has been shown to be necessary for the realization of 
long-term benefits of platelet-rich plasma injection.58
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Figure 2. Effects of overuse activity on the supraspinatus tendon in a rat model. Decreases in tendon modulus (A) and changes 
in expression of 17 cartilage-specific genes (B) and 12 tendon-specific genes (C) in overuse animals compared to controls indi-
cate tendon weakening and potential metaplasia of the supraspinatus into a more fibrocartilaginous phenotype with overuse.11,12 
Reprinted with permission from Elsevier and John Wiley and Sons.

“...mechanical load seems to  
provide a protective role against 

collagen degradation,49 
possibly enabling more productive  

remodeling through preferential 
elimination of unstressed fibers.50  ”
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Interesting theories regarding the role of neuronal activ-
ity during healing also have been developed in the past 
decade. Evidence of nerve ingrowth into tendon fascicles 
during inflammatory and proliferative stages of heal-
ing along with increases in substance P (SP), calcitonin 
gene-related peptide (CGRP), vasoactive intestinal peptide 
(VIP), and neuropeptide Y (NPY) have indicated the active 
role of nerves in healing.59 In addition, SP, NPY, and VIP 
have been administered to healing ligaments, resulting in 
improved repair strength and collagen organization.60,61 
The mechanisms for these improvements are likely due to 
the proliferative effect of these neuropeptides on fibroblasts 
and capillaries60 as opposed to paradoxical inhibition of 
healing-associated growth factors or matrix synthesis.62 
In relation to mechanical loading, the detrimental effects 
of immobilization have been associated with decreased 
expression of SP and CGRP receptors.63

Meniscus

Anatomy
The meniscus is a highly heterogeneous tissue, likely as a 
result of adaptations to its unique functional demands. The 
fibrous outer portion is composed primarily of circumfer-

entially aligned type I collagen fibers that resist tensile 
loads, while the cartilaginous inner portion has more 
type II collagen and aggregating proteoglycans to support 
compression. Meniscal cells also vary significantly with 
abundant fibroblast-like cells near the periphery and less 
numerous chondrocyte-like cells in the deeper sections.64 
As a result of these anatomical and biological heterogene-
ities, predicted cellular strains due to tissue-level deforma-
tions and gene expression are highly region dependent.65,66

Remodeling
The primary in vivo investigations of load-induced remod-
eling of meniscal tissue, not published during the past 
decade, focus on immobilization and report detrimental 
effects,67,68 whereas the predominance of contemporary 
papers examine meniscal tissue explants and isolated cells. 
Studies over a range of dynamic loads on tissue explants 
depict contradictory results regarding protein synthesis, 
with observations of increases,69 mixed or no changes,70 or 
decreases71 in extracellular matrix (ECM) synthesis. There 
is some evidence that complete unloading may lead to cata-
bolic tissue activity,72 but these data also are inconsistent.73 
Nevertheless, there is general consensus that supraphysi-
ologic cyclic loading (20% strain or 0.1 MPa74) may induce 
catabolism through upregulation of proteases modulated by 
interleukin 1 (IL-1), which is, in turn, dependent on nitric 
oxide production through nitric oxide synthase.70,73,75

Cell-based studies provide a different story. Whether 
tensile stretch stimulates similar increases in proinflam-
matory gene expression76 or, conversely, a strong inhibi-
tory effect on IL-1–modulated genes77 is unclear. In addi-
tion, application of elevated hydrostatic pressures results 
in increased anabolic rather than catabolic activity.78 One 
reason for this discrepancy with tissue-level experiments 

may be that in vivo microscopic cellular strains are pos-
sibly significantly larger than corresponding macroscopic 
tissue strains,79 therefore suggesting that the strains used 
in the aforementioned cellular studies are not consistent 
with the strains applied to tissue explants.

Repair
While injuries occurring in the more vascular periphery heal 
well, those in the inner region do not.64 Possibly owing to 
the extremely poor repair potential of the inner meniscus 

Figure 3. Potential biologic targets for improved meniscal heal-
ing. Meniscal explants cultured with 10 ng/mL interleukin 1 (A) 
or with 10 ng/mL tumor necrosis factor α (B) show severely 
reduced push-out strength in an in vitro integrative repair 
model.86 Reprinted with permission from Elsevier.

“  ...the detrimental effects of 
immobilization have been asso-
ciated with decreased expres-

sion of substance P and calcito-
nin gene-related peptide.63”
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regardless of mechanical stimulation,80 there have been few 
investigations of the interplay between load and meniscal 
healing. Still, the few animal models that exist indicate that 
mobilization, as compared with immobilization, reduces 
glycosaminoglycan degradation and expression of proin-
flammatory mediators81 while increasing blood flow within 
the meniscus.82

Biologic Enhancement
Possibilities for improving the intrinsic healing response 
of the meniscus include introduction of engineered tis-
sues83 and manipulation of the vast number of growth fac-
tors that have been shown to affect meniscal cells.84 Most 
studies of integrative repair have used in vitro models85 
and demonstrated that inhibiting IL-1, tumor necrosis fac-
tor α (TNF-α), or MMPs can enhance healing and inte-
gration86 (Figure 3). Despite evidence that this also may 
be accomplished through mechanical loading,72 no study 
has directly investigated this effect on repair. In terms 
of combined biologic and mechanical enhancement of 
repair, static hydrostatic pressure on meniscal cell-seeded 
scaffolds has a synergistic anabolic effect with transform-
ing growth factor β1 (TGF-β1),87 yet static compression 
of tissue explants seems to counteract any benefits of 
TGF-β1, IGF-1, platelet-derived growth factor, or basic 
fibroblast growth factor application.88
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