POLICY & PRACTICE

Diabetes Bill Introduced

Rep. Zack Space (D-Ohio) has reintroduced the Catalyst to Better Diabetes Care Act (H.R. 1402), a bill to increase diabetes treatment, tracking, and outreach. Among other things, the bill would create a patient and provider outreach program aimed at increasing use of the Medicare diabetes screening benefit, track progress in diabetes care through a national report card, promote privatesector diabetes wellness programs through a "best practices" advisory

group led by the Commerce Department, and work toward lessening the underreporting of diabetes on death certificates. "Reduced productivity and treatment of diabetes costs the United States more than we spend fighting in Iraq," Rep. Space said in a statement.

Warning on Sharing Insulin Pens

The Food and Drug Administration has issued an alert warning health care providers and patients about the dangers of sharing insulin pens and cartridges.

"Sharing of insulin pens may result in transmission of hepatitis viruses, HIV, or other blood-borne pathogens," the agency noted. The FDA reported that more than 2,000 patients at William Beaumont Army Medical Center in El Paso, Tex., may have shared insulin pens during 2007-2009. "Although the disposable needles in the insulin pens were reportedly changed for each patient, there is still a risk of blood contamination of the pen reservoir or cartridge," the alert noted. "Patients who were treated with insulin pens at the hospitals in question are being contacted by the hospitals, and

Clinical Trials Experience. Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Sitagliptin and Metformin Co-administration in Patients with Type 2 Diabetes Inadequately Controlled on Diet and Exercise. The most common (\geq 5% of patients) adverse reactions reported (regardless of investigator assessment of causality) in a 24-week placebo-controlled factorial study in which sitagliptin and metformin were co-administered to patients with type 2 diabetes inadequately controlled on diet and exercise were diarrhea (sitagliptin + metformin [N=372], 7.5%; placebo [N=176], 4.0%), upper respiratory tract infection (6.2%, 5.1%), and headache (5.9%, 2.8%). Sitagliptin Add-on Therapy in Patients with Type 2 Diabetes Inadequately Controlled on Metformin Alone. In a 24-week placebo-controlled trial of sitagliptin 100 mg administered once daily added to a twice daily metformin regimen, there were no adverse reactions reported regardless of investigator assessment of causality in $\geq 5\%$ of patients and more commonly than in patients given placebo. Discontinuation of therapy due to clinical adverse reactions was similar to the placebo treatment group (sitagliptin and metformin, 1.9%; placebo and metformin, 2.5%).

Hypoglycemia. Adverse reactions of hypoglycemia were based on all reports of hypoglyce concurrent glucose measurement was not required. The overall incidence of pre-specified adverse reactions of hypoglycemia in patients with type 2 diabetes inadequately controlled on diet and exercise was 0.6% in patients given placebo, 0.6% in patients given sitagliptin alone, 0.8% in patients given metformin alone, and 1.6% in patients given sitagliptin in combination with metformin. In patients with type 2 diabetes inadequately controlled on metformin alone, the overall incidence of adverse reactions of hypoglycemia was 1.3% in patients given add-on sitagliptin and 2.1% in patients given add-on placebo.

Gastrointestinal Adverse Reactions. In patients treated with sitagliptin and metformin vs patients treated with metformin alone, incidences of pre-selected gastrointestinal adverse reactions were diarrhea (sitagliptin + metformin [N=464], 2.4%; placebo + metformin [N=237], 2.5%), nausea (1.3%, 0.8%), vomiting (1.1%, 0.8%), and abdominal pain (2.2%, 3.8%).

Sitagliptin in Combination with Metformin and Glimepiride. In a 24-week placebo-controlled study of sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metformin and glimepiride (sitagliptin, N=116; placebo, N=113), the adverse reactions reported regardless of investigator assessment of causality in \geq 5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: hypoglycemia (sitagliptin, 16.4%; placebo, 0.9%) and headache (6.9%, 2.7%).

No clinically meaningful changes in vital signs or in ECG (including in QTc interval) were observed with the combination of sitagliptin and metformin.

The most common adverse experience in sitagliptin monotherapy reported regardless of investigator assessment of causality in \geq 5% of patients and more commonly than in patients given placebo was nasopharyngitis.

The most common (>5%) established adverse reactions due to initiation of metformin therapy are diarrhea, nausea/vomiting, flatulence, abdominal discomfort, indigestion, asthenia, and headache. Laboratory Tests.

Sitagliptin. The incidence of laboratory adverse reactions was similar in patients treated with sitagliptin and metformin (7.6%) compared to patients treated with placebo and metformin (8.7%). In most but not all studies, a small increase in white blood cell count (approximately 200 cells/microL) was observed due to a small increase in neutrophils. This change in laboratory parameters is not considered to be clinically relevant.

Metformin hydrochloride. In controlled clinical trials of metformin of 29 weeks duration, a decrease to subnormal levels of previously normal serum Vitamin B₁₂ levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with B₁₂ absorption from the B₁₂-intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of metformin or Vitamin B_{12} supplementation [see Warnings and Precautions].

Postmarketing Experience. The following additional adverse reactions have been identified during postapproval use of JANUMET or sitagliptin, one of the components of JANUMET. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Hypersensitivity reactions include anaphylaxis, angioedema, rash, urticaria and exfoliative skin conditions including Stevens-Johnson syndrome [see Warnings and Precautions]; upper respiratory tract infection; hepatic enzyme elevations.

DRUG INTERACTIONS

Cationic Drugs. Cationic drugs (e.g., amiloride, digoxin, morphine, procainamide, quinidine, quinine, tranitdine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular sceretion theoretically have the potential for interaction with metformin by competing for common renal tubular transport systems. Such interaction between metformin and oral cimetidine has been observed in normal healthy volunteers in both single- and multiple-dose metformin-cimetidine drug interaction studies, with a 60% increase in peak metformin plasma and whole blood concentrations and a 40% increase in plasma and whole blood metformin AUC. There was no charge in elimination half-life in the single-dose study. Metformin had no effect on cimetidine pharmacokinetics. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of JANUMET and/or the interfering drug is recommended in patients who are taki cationic medications that are excreted via the proximal renal tubular secretory system.

Digoxin. There was a slight increase in the area under the curve (AUC, 11%) and mean peak drug These increases are not considered likely to be clinically meaningful. Digoxin, as a cationic drug, has the potential to compete with metformin for common renal tubular transport systems, thus affecting the serum concentrations of either digoxin, metformin or both. Patients receiving digoxin should be monitored appropriately. No dosage adjustment of digoxin or JANUMET is recommended. Glyburide. In a single-dose interaction study in type 2 diabetes patients, co-administration of metformin and glyburide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glyburide AUC and C_{max} were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects make the clinical significance of this interaction uncertain. **Furosemide.** A single-dose, metformin-furosemide drug interaction study in healthy subjects demonstrated that pharmacokinetic parameters of both compounds were affected by co-administration. Furosemide increased the metformin plasma and blood C_{max} by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with metformin, the C_{max} and AUC of furosemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in further in a subject and the second change in furosemide renal clearance. No information is available about the interaction of metformin and furosemide when co-administered chronically.

Nifedipine. A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that co-administration of nifedipine increased plasma metformin C_{max} and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. max and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin Metformin had minimal effects on nifedipine.

The Use of Metformin with Other Drugs. Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving JANUMET the patient should be closely observed the provide in depunde depundence. to maintain adequate glycemic control.

In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when co-administered in single-dose interaction studies.

Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins. USE IN SPECIFIC POPULATIONS

Pregnancy Pregnancy Category B.

JANUMET. There are no adequate and well-controlled studies in pregnant women with JANUMET or its individual components; therefore, the safety of JANUMET in pregnant women is not known. JANUMET should be used during pregnancy only if clearly needed. Merck & Co., Inc., maintains a registry to monitor the pregnancy outcomes of women exposed to

JANUMET while pregnant. Health care providers are encouraged to report any prenatal exposu to JANUMET by calling the Pregnancy Registry at (800) 986-8999.

No animal studies have been conducted with the combined products in JANUMET to evaluate effects on reproduction. The following data are based on findings in studies performed with sitagliptin or metformin individually.

Sitagliptin. Reproduction studies have been performed in rats and rabbits. Doses of sitagliptin up to 125 mg/kg (approximately 12 times the human exposure at the maximum recommende human dose) did not impair fertility or harm the fetus. There are, however, no adequate and well-controlled studies with sitagliptin in pregnant women.

Sitagliptin administered to pregnant female rats and rabbits from gestation day 6 to 20 (organogenesis) was not teratogenic at oral doses up to 250 mg/kg (rats) and 125 mg/kg (rabbits), or approximately 30 and 20 times human exposure at the maximum recommended human dose (MRHD) of 100 mg/day based on AUC comparisons. Higher doses increased the incidence of rib malformations in offspring at 1000 mg/kg, or approximately 100 times human exposure at the MRHD. Sitagliptin administered to female rats from gestation day 6 to lactation day 21 decreased body weight in male and female offspring at 1000 mg/kg. No functional or behavioral toxicity was observed in offspring of rats.

Placental transfer of sitagliptin administered to pregnant rats was approximately 45% at 2 hours and 80% at 24 hours postdose. Placental transfer of sitagliptin administered to pregnant rabbits was approximately 66% at 2 hours and 30% at 24 hours.

Metformin hydrochloride. Metformin was not teratogenic in rats and rabbits at doses up to 600 mg/kg/day. This represents an exposure of about 2 and 6 times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons for rats and rabbits, respectively. nended Determination of fetal concentrations demonstrated a partial placental barrier to metformin.

Nursing Mothers. No studies in lactating animals have been conducted with the combined components of JANUME. In studies performed with the individual components, both sitagliptin and metformin are secreted in the milk of lactating rats. It is not known whether sitagliptin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when JANUMET is administered to a nursing woman.

Pediatric Use. Safety and effectiveness of JANUMET in pediatric patients under 18 years have not been established

Geriatric Use. JANUMET. Because sitagliptin and metformin are substantially excreted by the kidney and because aging can be associated with reduced renal function, JANUMET should be used with caution as age increases. Care should be taken in dose selection and should be based on careful and regular monitoring of renal function [see Warnings and Precautions]. Sitagliptin. Of the total number of subjects (N=3884) in Phase II and III clinical studies of sitagliptin, 725 patients were 65 years and over, while 61 patients were 75 years and over. No overall differences in safety or effectiveness were observed between subjects 65 years and over and younger subjects. While this and other reported clinical experience have not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.

Metformin hydrochloride. Controlled clinical studies of metformin did not include sufficient numbers of elderly patients to determine whether they respond differently from younger patients, although other reported clinical experience has not identified differences in responses between the elderly and young patients. Metformin should only be used in patients with normal renal function. The initial and maintenance dosing of metformin should be conservative in this during the during the response of the standard and the st patients with advanced age, due to the potential for decreased renal function in this population. Any dose adjustment should be based on a careful assessment of renal function [see Contraindications; Warnings and Precautions].

MERCK

JANUMET is a registered trademark of Merck & Co., Inc. Copyright ©2009 Merck & Co., Inc. Whitehouse Station, NJ 08889, USA All rights reserved. 20902022(2)(107)-JMT

are being offered testing for hepatitis and HIV. Some of the potentially exposed patients have reportedly tested positive for hepatitis C; however, it is not known if the hepatitis infection occurred through insulin pen sharing, or if those who tested positive had previously undiagnosed hepatitis C." The agency advises providers to report any unexpected adverse or serious events associated with the use of insulin pens or insulin cartridges at www.fda.gov/medwatch/ report/hcp.htm.

Physicians Postponing Retirement

Fewer physicians left group practices in 2008 than in 2007, and a majority of group practice leaders believe that the change reflects more physicians delaying retirement because of the economy, said the American Medical Group Association. The group's annual survey of AMGA members reported about a 6% turnover of group practice physicians in 2008, compared with nearly 7% in 2007. The top reasons cited for leaving a group included poor fit with one's practice and need to relocate to be closer to family. Flexibility can keep physicians in a practice, according to respondents, nearly half of whom said part-time options encourage physicians to stay while meeting personal needs or to delay retirement. Almost three-quarters of group practices offer preretirement physicians reduced hours, 56% allow for no call responsibility, and 20% allow concentration on certain patient groups.

Upcoding Alleged in MA Plans

Overpayments to Medicare Advantage plans will not be solved until Congress addresses the plans' upcoding practices, according to a new report from the Center on Budget and Policy Priorities. "Upcoding refers to unexplained changes [that] plans make over time in the diagnosis codes they assign that make their enrollees appear less healthy than they actually are," the report says. "Upcoding helps private plans financially by inflating the payments that Medicare makes to them." According to 2007 data from the Centers for Medicare and Medicaid Services, the severity of the diagnosis codes being used for beneficiaries is rising faster among beneficiaries who have stayed in Medicare Advantage plans than among those staying in traditional Medicare.

Group Wants Ban on Industry CME

The consumer watchdog group Public Citizen has asked the American Medical Association to support a ban on commercial support of continuing medical education. In a letter to the chairs of the AMA's ethical and CME councils, Public Citizen's Health Research Group said that it wants the ban "because the consequences of any corrupting influence of commercial support on CME are so significant." The group said that "physiciansupported CME" is a viable alternative to commercial funding. The Pharmaceutical Research and Manufacturers of America said in a statement that a ban on commercial support of CME could prevent physicians from accessing critical information about treatments.