Outreach Boosts Quality of Rural Diabetes Care

BY MITCHEL L. ZOLER

NEW YORK — A concerted effort to bring diabetes educators to rural primary care practices in the Pittsburgh area led to substantial improvements in the quality of patient care.

In one practice, for example, use of critical monitoring tools rose significantly after a diabetes educator began visiting the practice and its patients.

Regular use of a dilated eye exam rose from 38% before the educator's visits to 75% during the program. The percentage of patients with diabetes who underwent a regular foot examination jumped from 57% before the educator program to 82%, Linda M. Siminerio, Ph.D., said at a meeting sponsored by the American Diabetes Association.

"We saw this in every practice," she said. "When you put an educator in the

practice, the staff becomes more aware of diabetes and what patients need, and patients [who have attended educational sessions] ask for more services," said Dr. Siminerio, a health educator and director of the Diabetes Institute at the University of Pittsburgh. The diabetes educator program helps physicians deliver better chronic-disease management, and brings state-of-the-art medicine into the community.

Dr. Siminerio and her associates started the Pittsburgh Regional Initiative for Diabetes Education (PRIDE) with the goal of improving diabetes care and awareness by educating patients, providers, and the regional community through outreach programs in Western Pennsylvania.

The program included screening events, health fairs, telephone banks, and visits by diabetes educators to practices in all corners of the region.

The rural practice that Dr. Siminerio used as an example had 104 patients with diabetes, with an average age of 65. Before the program started, seven of these patients had met with a diabetes educator, seven had received nutrition counseling, and three had received exercise instruction.

After weekly visits by a diabetes educator, the level of care received by the pa-

'We saw this in every practice. When you put an educator in the practice, the staff becomes more aware of diabetes and what patients need, and patients ask for more services.'

tients improved. In addition to the increases in eye and foot examinations, the percentage of patients undergoing at least two measures of their hemoglobin A_{1c} levels rose from 75% to 95%.

The percentage receiving monofilament testing as part of their foot examination rose from 47% before the program to 79%. Lipid profiling rose from 88% to 99%, and urinalysis increased from 62% to 81%.

Certain clinical measures also improved, with the average serum level of LDL cholesterol falling from 107 mg/dL to 98 mg/dL, and average systolic blood pressure dropping from 140 mm Hg to 135 mm Hg.

The clinical impact of the PRIDE program was more apparent in a compilation of data from four of the primary care practices that received point-of-service diabetes education.

In January 2003, before the education sessions began, the average HbA_{1c} level among patients with diabetes in these practices was 7.6%. In December 2006, the average HbA_{1c} level in these patients was 7.3%. The average LDL level before education began was 117 mg/dL; by 2006, the average LDL level had dropped to 100 mg/dL.

These findings also highlighted a shortcoming in the way that diabetes education was used. The patients referred by their physicians to see the visiting educators tended to be those with the highest HbA_{1c} and LDL levels; many other patients with diabetes, especially those with better test results, did not meet with educators.

'We need to reach the entire diabetes population, not just those who are in bad shape," Dr. Siminerio said.

insulin detemir (rDNA origin) injection

Rx ONLY BRIEF SUMMARY. Please see package insert for

INDICATIONS AND USAGE
LEVEMIR is indicated for once- or twice-daily subcutaneous administration for the treatment of adult and pediatric patients with type 1 diabetes mellitus or adult patients with type 2 diabetes mellitus who require basal (long acting) insulin for the control of hyperglycemia

CONTRAINDICATIONS

WARNINGS

WANNINGS
Hypoglycemia is the most common adverse effect of insulin therapy, including LEVEMIR. As with all insulins, the timing of hypoglycemia may differ among various insulin formulations.

Glucose monitoring is recommended for all patients with diabetes.

LEVEMIR is not to be used in insulin infusion pumps

Any change of insulin dose should be made cautiously and only under medical supervision. Changes in insulin and only under medical supervision. Changes in insulin strength, timing of dosing, manufacturer, type (e.g., regular, NPH, or insulin analogs), species (animal, human), or method of manufacture (rDNA versus animal-source insulin) may result in the need for a change in dosage. Concomitant oral antidiabetic treatment may need to be adjusted.

PRECAUTIONS

Inadequate dosing or discontinuation of treatment may lead to Inadequate dosing or discontinuation of treatment may lead to hyperglycemia and, in patients with type 1 diabetes, diabetic ketoacidosis. The first symptoms of hyperglycemia usually occur gradually over a period of hours or days. They include nausea, vomiting, drowsiness, flushed dry skin, dry mouth, increased urination, thirst and loss of appetite as well as acetone breath. Untreated hyperglycemic events are potentially fatal.

LEVEMIR is not intended for intravenous or intramuscular administration. The prolonged duration of activity of insulin determir is dependent on injection into subcutaneous tissue. Intravenous administration of the usual subcutaneous dose could result in severe hypoglycemia. Absorption after intramuscular administration is both faster and more extensive than absorption after subcutaneous administration

LEVEMIR should not be diluted or mixed with any other insulin preparations (see PRECAUTIONS, Mixing of Insulins)

Insulin may cause sodium retention and edema, particularly if previously poor metabolic control is improved by intensified insulin therapy.

Lipodystrophy and hypersensitivity are among potential clinical adverse effects associated with the use of all insulins.

As with all insulin preparations, the time course of LEVEMIR action may vary in different individuals or at different times in the same individual and is dependent on site of injection, blood supply, temperature, and physical activity.

Adjustment of dosage of any insulin may be necessary if patients change their physical activity or their usual meal plan.

Hypoglycemia

As with all insulin preparations, hypoglycemic reactions may be associated with the administration of LEVEMIR. Hypoglycemia is the most common adverse effect of insulins. Early warning symptoms of hypoglycemia may be different or less pronounced under certain conditions, such as long duration of diabetes, diabetic nerve disease, use of medications such as beta-blockers, or intensified diabetes control (see PRECAUTIONS, Drug lateractions). Such situations may result in sewere hypoglycemia. Interactions). Such situations may result in severe hypoglycemia (and, possibly, loss of consciousness) prior to patients' awareness of hypoglycemia.

or hypogycemia. The time of occurrence of hypoglycemia depends on the action profile of the insulins used and may, therefore, change when the treatment regimen or timing of dosing is changed. In patients being switched from other intermediate or long-acting insulin preparations to once- or twice-daily LEVEMIR, dosages can be prescribed on a unit-to-unit basis; however, as with all insulin preparations, dose and timing of administration may need to be adjusted to reduce the risk of hypoglycemia.

Renal Impairment
As with other insulins, the requirements for LEVEMIR may need to be adjusted in patients with renal impairment.

Hepatic Impairment

As with other insulins, the requirements for LEVEMIR may need to be adjusted in patients with hepatic impairment.

Injection Site and Allergic Reactions

As with any insulin therapy, lipodystrophy may occur at the injection site and delay insulin absorption. Other injection site reactions with insulin therapy may include redness, pain, itching hives, swelling, and inflammation. Continuous rotation of the injection site within a given area may help to reduce or prevent these reactions. Reactions usually resolve in a few days to a few

weeks. On rare occasions, injection site reactions may require discontinuation of LEVEMIR.

Systemic allergy: Generalized allergy to insulin, which is les common but potentially more serious, may cause rash (including pruritus) over the whole body, shortness of breath, wheezing, pruritus) over the whole body, shortness of breath, wheezing, reduction in blood pressure, rapid pulse, or sweating. Severe cases of generalized allergy, including anaphylactic reaction, may be life-threatening.

Intercurrent Conditions
Insulin requirements may be altered during intercurrent conditions such as illness, emotional disturbances, or other stresses.

Information for Patients LEVEMIR must only be used if the solution appears clear and LEVEMIR must only be used if the solution appears clear and colorless with no visible particles. Patients should be informed about potential risks and advantages of LEVEMIR therapy, including the possible side effects. Patients should be offered continued education and advice on insulin therapies, injection technique, life-style management, regular glucose monitoring, periodic glycosylated hemoglobin testing, recognition and management of hypo- and hyperglycemia, adherence to meal planning, complications of insulin therapy, timing of dosage, instruction for use of injection devices and proper storage of insulin. Patients should be informed that frequent, patient-performed blood glucose measurements are needed to achieve effective glycemic control to avoid both hyperglycemia and hypoglycemia. Patients must be instructed on handling of special situations such as intercurrent conditions (illness, stress, or emotional disturbances), an inadequate or skipped insulin dose, inadvertent administration of an increased insulin dose, inadvertent administration of an increased insulin dose, inadvertent administration of ricrular for additional information. As with all patients who have diabetes, the ability to concentrate and/or

As with all patients who have diabetes, the ability to concentrate and/or react may be impaired as a result of hypoglycemia or hyperglycemia Patients with diabetes should be advised to inform their health care professional if they are pregnant or are contemplating pregnancy (see PRECAUTIONS, Pregnancy).

Laboratory TestsAs with all insulin therapy, the therapeutic response to LEVEMIR should be monitored by periodic blood glucose tests. Periodic measurement of HbA_{1c} is recommended for the monitoring of long-term glycemic control.

Drug InteractionsA number of substances affect glucose metabolism and may require insulin dose adjustment and particularly close monitoring.

The following are examples of substances that may reduce the blood-glucose-lowering effect of insulin: corticosteroids, danazol, diuretics, sympathomimetic agents (e.g., epinephrine, albuterol, terbutaline), isoniazid, phenothiazine derivatives, somatropin, thyroid hormones, estrogens, progestogens (e.g., in oral contraceptives).

teg., in that contraceptives). The following are examples of substances that may increase the blood-glucose-lowering effect of insulin and susceptibility to hypoglycemia: oral antidiabetic drugs, ACE inhibitors, disopyramide, fibrates, fluoxetine, MAO inhibitors, propoxypher salicylates, somatostatin analog (e.g., octreotide), and sulfonamide antihiotics. sulfonamide antibiotics.

Beta-blockers, clonidine, lithium salts, and alcohol may either potentiate or weaken the blood-glucose-lowering effect of insulin. Pentamidine may cause hypoglycemia, which may sometimes be followed by hyperglycemia. In addition, under the influence of sympatholytic medicinal products such as beta-blockers, clonidine, guanethidine, and reserpine, the sign of hypoglycemia may be reduced or absent.

The results of in-vitro and in-vivo protein binding studies demonstrate that there is no clinically relevant interaction between insulin detemir and fatty acids or other protein bound drugs.

Mixing of Insulins if LEVEMIR is mixed with other insulin preparations, the profile of action of one or both individual components may change. Mixing LEVEMIR with insulin aspart, a rapid acting insulin analog, resulted in about 40% reduction in AUC $_{0.2n}$ and C $_{\rm max}$ analog, resulted in about 40% reduction in AUC $_{\scriptscriptstyle (0.2h)}$ and C $_{\scriptscriptstyle rms}$ for insulin aspart compared to separate injections when the ratio of insulin aspart to LEVEMIR was less than 50%.

LEVEMIR should NOT be mixed or diluted with any other

Carcinogenicity, Mutagenicity, Impairment of Fertility
Standard 2-year carcinogenicity studies in animals have not
been performed. Insulin detemir tested negative for genotoxic
potential in the *in-vitro* reverse mutation study in bacteria,
human peripheral blood lymphocyte chromosome aberration
test, and the *in-vivo* mouse micronucleus test.

Pregnancy: Teratogenic Effects: Pregnancy Category C Pregnancy: Teratogenic Effects: Pregnancy Category C In a fertility and embryonic development study, insulin detemir was administered to female rats before mating, during mating, and throughout pregnancy at doses up to 300 nmol/kg/day, and throughout pregnancy at doses up to 300 nmol/kg/day roduced numbers of litters with visceral anomalies. Doses up to 900 nmol/kg/day (approximately 135 times the recommended human dose based on AUC ratio) were given to rabbits during organogenesis. Drug-dose related increases in the incidence of fetuses with gall bladder abnormalities such as small, bilobed, bifurcated and missing gall bladders were observed at a dose of 900 nmol/kg/day. The rat and rabbit embryofetal development studies that included concurrent human insulin control groups indicated that insulin detemir and human insulin had similar effects regarding embryotoxicity and teratogenicity.

Nursing mothers
It is unknown whether LEVEMIR is excreted in significant amounts in human milk. For this reason, caution should be exercised when LEVEMIR is administered to a nursing mother. Patients with diabetes who are lactating may require adjustments in insulin dose, meal plan, or both

 $\begin{array}{ll} \textbf{Pediatric use} \\ \text{In a controlled clinical study, HbA}_{\text{to}} \text{ concentrations and rates of} \\ \text{hypoglycemia were similar among patients treated with LEVEMIR} \\ \text{and patients treated with NPH human insulin.} \\ \end{array}$

Of the total number of subjects in intermediate and long-term clinical studies of LEVEMIR, 85 (type 1 studies) and 363 (type 2 studies) were 65 years and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. In elderly patients with diabetes, the initial dosing, dose increments, and maintenance dosage should be conservative to avoid hypoglycemic reactions. Hypoglycemia may be difficult to recognize in the elderly.

ADVERSE REACTIONS

Adverse events commonly associated with human insulin therapy include the following:

Body as Whole: allergic reactions (see PRECAUTIONS, Allergy).

Skin and Appendages: lipodystrophy, pruritus, rash. Mild injection site reactions occurred more frequently with LEVEMIR than with NPH human insulin and usually resolved in a few days to a few weeks (see PRECAUTIONS, Allergy).

Hypoglycemia: (see WARNINGS and PRECAUTIONS).

In trials of up to 6 months duration in patients with type 1 and type 2 diabetes, the incidence of severe hypoglycemia with LEVEMIR was comparable to the incidence with NPH, and, as expected, greater overall in patients with type 1 diabetes (Table 4).

Weight gain:
In trials of up to 6 months duration in patients with type 1 and type 2 diabetes, LEVEMIR was associated with somewhat less weight gain than NPH (Table 4). Whether these observed differences represent true differences in the effects of LEVEMIR and NPH insulin is not known, since these trials were not blinded and the protocols (e.g., diet and exercise instructions and monitoring) were not specifically directed at exploring hypotheses related to weight effects of the treatments compared. The clinical significance of the observed differences has not been established. has not been established

Table 4:	Safety Information on Clinical Studies					
			Weight (kg)		Hypoglycemia (events/subject/month)	
	Treatment	# of subjects	Baseline	End of treatment	Major*	Minor**
Type 1						
Study A	LEVEMIR	N=276	75.0	75.1	0.045	2.184
	NPH	N=133	75.7	76.4	0.035	3.063
Study C	LEVEMIR	N=492	76.5	76.3	0.029	2.397
	NPH	N=257	76.1	76.5	0.027	2.564
Study D	LEVEMIR	N=232	N/A	N/A	0.076	2.677
Pediatric	NPH	N=115	N/A	N/A	0.083	3.203
Type 2						
Study E	LEVEMIR	N=237	82.7	83.7	0.001	0.306
	NPH	N=239	82.4	85.2	0.006	0.595
Study F	LEVEMIR	N=195	81.8	82.3	0.003	0.193
	NPH	N=200	79.6	80.9	0.006	0.235

Major = requires assistance of another individual because of neurologic impairment
 **Minor = plasma glucose <56 mg/dl, subject able to deal with the episode him/herself

OVERDOSAGE

Hypoglycemia may occur as a result of an excess of insulin relative to food intake, energy expenditure, or both. Mild episodes of hypoglycemia usually can be treated with oral glucose. Adjustments in drug dosage, meal patterns, or exercise may be needed. More severe episodes with coma, seizure, or neurologic impairment may be treated with intramuscular/ subcutaneous glucagon or concentrated intravenous glucose. After apparent clinical recovery from hypoglycemia, continued observation and additional carbohydrate intake may be necessary to avoid reoccurrence of hypoglycemia.

More detailed information is available on request

Date of issue: October 19, 2005

Manufactured for Novo Nordisk Inc., Princeton, NJ 08540 Manufactured by Novo Nordisk A/S, 2880 Bagsvaerd, Denmark www.novonordisk-us.com

Levemir® and Novo Nordisk® are trademarks of Novo Nordisk A/S © 2006 Novo Nordisk Inc.

