Thiopurine May Cut Colorectal Ca Risk in IBD

BY MICHELE G. SULLIVAN

CHICAGO — Thiopurine therapy appears to prevent colorectal neoplasias in patients with long-term, extensive inflammatory bowel disease, reducing the risk of cancer or high-grade dysplasia by more than 70%.

The finding from a large French prospective cohort study casts a new light on the usual concern about the im-

munosuppressive effect of thiopurine, Dr. Philippe Seksik said at the annual Digestive Disease Week.

Thiopurines could increase the risk of colorectal cancer via their immunosuppressive effect, or through their anti-inflammatory effect [they] could reduce the risk of colorectal cancer," said Dr. Seksik of Saint-Antoine Hospital, Paris. "Our data raise the hypothesis that the anti-inflammatory effect of thiopurines

on colonic mucosa has a much greater impact on the risk of colorectal cancer than the putative deleterious effect of its drug-induced immunosuppression.'

Dr. Seksik and his colleagues examined the risk of colorectal cancer in the national CESAME (Cancers et Sur-Risque Associé aux Maladies Inflammatoires Chroniques Intestinales en France) study. CESAME is a cross-sectional French cohort study that prospectively assesses the risk of cancers in patients with irritable bowel diseases. The study recruited 19,500 patients from 2004 to 2005, and followed them through December 2007. Dr. Seksik's analysis included follow-up data from 85% of the cohort.

The patients' mean age at recruitment was 40 years (range, 1-96 years). The mean duration of the disease was 8 years, although again, the range was very wide, including a disease duration of up to 65 years. In all, 11,760 patients (60%) had Crohn's disease; of these, 15% had longstanding extensive colitis, defined as a disease duration of more than 10 years with more than 50% of the colonic mucosa in-

In those with long-standing extensive colitis, thiopurine reduced the risk of new neoplasia by 72%.

DR. SEKSIK

volved. The remaining 40% of the cohort had ulcerative colitis or an unclassified inflammatory bowel disease; of these, 37% had long-standing extensive colitis.

In the entire cohort, there were 36 incident cases of colorectal cancer and 21 high-grade dysplasias. Among patients with long-standing extensive colitis, there were 21 new cancers and 8 high-grade dysplasias.

At study inclusion, 36% of the patients were on immunosuppressive therapy. Of those, 30% were taking azathioprine or 6-mercaptopurine, 4% methotrexate, and 5% a tumor necrosis factor antagonist. Among all thiopurine-exposed patients, there were nine incident cases of colorectal cancer and three cases of highgrade dysplasia. Among only those with long-standing colitis, there were five colorectal cancers and one case of high-grade dysplasia.

On multivariate analysis examining the risk of colorectal neoplasia associated with sex, age, disease duration, and extensive colitis, the presence of extensive colitis significantly increased the risk of neoplasia sevenfold, compared with the expected number of cases obtained from the national French cancer registries.

When the team examined the association between thiopurine therapy and neoplasia, they found a nonsignificant risk reduction of 43%, compared with patients who had never taken a thiopurine. The effect was much more powerful when the analysis was restricted to those with longstanding extensive colitis; thiopurine exposure reduced the risk of new neoplasia by 72%-a 3.5-fold decrease from the rate seen in thiopurine-naive patients.

Researchers are still uncertain about the mechanism of protection, Dr. Seksik said. "The protective effect could be due to a nonspecific anti-inflammatory effect, or it could be a drug-specific, antineoplastic action on the inflammation-dysplasia-cancer sequence." Dr. Seksik said that he had no relevant financial disclosures.

ADVERSE REACTIONS

Clinical Trials Experience. Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. Sitagliptin and Metformin Co-administration in Patients with Type 2 Diabetes Inadequately Controlled on Diet and Exercise. The most common (\geq 5% of patients) adverse reactions reported Controlled on Diet and Exercise. The most common (>5% of patients) adverse reactions reported (regardless of investigator assessment of causality) in a 24-week placebo-controlled factorial study in which sitagliptin and metformin were co-administered to patients with type 2 diabetes inadequately controlled on diet and exercise were diarrhea (sitagliptin + metformin [N=372], 7.5%; placebo [N=176], 4.0%), upper respiratory tract infection (6.2%, 5.1%), and headache (5.9%, 2.8%). *Sitagliptin Add-on Therapy in Patients with Type 2 Diabetes Inadequately Controlled on Metformin Alone.* In a 24-week placebo-controlled trial of sitagliptin 100 mg administered once daily added to a twice daily metformin regimen, there were no adverse reactions reported regardless of investigator assessment of causality in 55% of patients and more commonly than in patients given placebo. Discontinuation of therapy due to clinical adverse reactions was similar to the placebo treatment group (sitagliptin and metformin, 1.9%; placebo and metformin, 2.5%).

Hypoglycemia. Adverse reactions of hypoglycemia were based on all reports of hypoglycemia; a concurrent glucose measurement was not required. The overall incidence of pre-specified adverse reactions of hypoglycemia in patients with type 2 diabetes inadequately controlled on diet and exercise was 0.6% in patients given placebo, 0.6% in patients given sitagliptin alone, 0.8% in patients given metformin alone, and 1.6% in patients given sitagliptin in combination with metformin. In patients with type 2 diabetes inadequately controlled on metformin alone, the overall incidence of adverse reactions of hypoglycemia was 1.3% in patients given add-on sitagliptin and 2.1% in patients given add-on placebo.

Gastrointestinal Adverse Reactions. In patients treated with sitagliptin and metformin vs patients treated with metformin alone, incidences of pre-selected gastrointestinal adverse reactions were diarrhea (sitagliptin + metformin [N=464], 2.4%; placebo + metformin [N=237], 2.5%), nausea (1.3%, 0.8%), vomiting (1.1%, 0.8%), and abdominal pain (2.2%, 3.8%).

Sitagliptin in Combination with Metformin and Glimepiride. In a 24-week placebo-controlled study or sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metrormin and glimepiride (sitagliptin, N=116; placebo, N=113), the adverse reactions reported regardless of investigator assessment of causality in \geq 5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: hypoglycemia (sitagliptin, 16.4%; placebo, 0.9%) and headache (6.9%, 2.7%).

No clinically meaningful changes in vital signs or in ECG (including in QTc interval) were observed with the combination of sitagliptin and metformin.

The most common adverse experience in sitagliptin monotherapy reported regardless of The most common advise component of the straight monotone by reported registress of investigator assessment of causality in \geq 5% of patients and more commonly than in patients given placebo was nasopharyngitis.

The most common (>5%) established adverse reactions due to initiation of metformin therapy are diarrhea, nausea/vomiting, flatulence, abdominal discomfort, indigestion, asthenia, and headache Laboratory Tests.

Sitagliptin. The incidence of laboratory adverse reactions was similar in patients treated with sitagliptin and metformin (7.6%) compared to patients treated with placebo and metformin (8.7%). In most but not all studies, a small increase in white blood cell count (approximately 200 cells/microL difference in WBC vs placebo; mean baseline WBC approximately 6600 cells/ microL) was observed due to a small increase in neutrophils. This change in laboratory parameters is not considered to be clinically relevant.

Metformin hydrochloride. In controlled clinical trials of metformin of 29 weeks duration, a decrease to subnormal levels of previously normal serum Vitamin B₁₂ levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with B₁₂ absorption from the B₁₂-intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of metformin or Vitamin B_{12} supplementation [see Warnings and Precautions].

Postmarketing Experience. The following additional adverse reactions have been identified during postapproval use of JANUMET or sitagliptin, one of the components of JANUMET. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Hypersensitivity reactions include anaphylaxis, angioedema, rash, urticaria, cutaneous vasculitis, and exfoliative skin conditions including Stevens-Johnson syndrome [see Warnings and Precautions]; upper respiratory tract infection; hepatic enzyme elevations; pancreatitis.

DRUG INTERACTIONS

Cationic Drugs. Cationic drugs (e.g., amiloride, digoxin, morphine, procainamide, quinidine, quinine tranitidine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular secretion theoretically have the potential for interaction with metformin by competing for common renal tubular transport systems. Such interaction between metformin and oral cimetidine has been observed in normal healthy volunteers in both single- and multiple-dose metformin-cinentiatine drug interaction studies, with a 60% increase in peak metformin plasma and whole blood concentrations and a 40% increase in plasma and whole blood metformin AUC. There was no change in elimination half-life in the single-dose study. Metformin had no effect on cimetidine pharmacokinetics. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of JANUMET and/or the interfering drug is recommended in patients who are taking cationic medications that are excreted via the proximal renal tubular secretory system.

Digoxin. There was a slight increase in the area under the curve (AUC, 11%) and mean peak drug **bigomin**. There was a singlit increase in the area under the curve (AOC, 11%) and mean peak drug concentration (C_{max} , 18%) of digoxin with the co-administration of 100 mg sitagliptin for 10 days. These increases are not considered likely to be clinically meaningful. Digoxin, as a cationic drug, has the potential to compete with metformin for common renal tubular transport systems, thus affecting the serum concentrations of either digoxin, metformin or both. Patients receiving digoxin should be monitored appropriately. No dosage adjustment of digoxin or JANUMET is recommended. Glyburide. In a single-dose interaction study in type 2 diabetes patients, co-administration of

build and a glyburide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glyburide AUC and C_{max} were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects make the clinical significance of this interaction uncertain.

Furosemide. A single-dose, metformin-furosemide drug interaction study in healthy subjects demonstrated that pharmacokinetic parameters of both compounds were affected by co-administration. Furosemide increased the metformin plasma and blood C_{max} by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with metformin, the C_{max} and AUC of furosemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in the terminal half-life was decreased by 32%. change in furosemide renal clearance. No information is available about the interaction of metformin and furosemide when co-administered chronically.

Nifedipine. A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that co-administration of nifedipine increased plasma metformin C_{max} and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. T_{max} and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin. Metformin had minimal effects on nifedipine.

The Use of Metformin with Other Drugs. Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving JANUMET the patient should be closely observed to maintain adequate glycemic control.

In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when co-administered in single-dose interaction studies. Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins.

USE IN SPECIFIC POPULATIONS

Pregnancy

Pregnancy Pregnancy Category B. JANUMET. There are no adequate and well-controlled studies in pregnant women with JANUMET or its individual components; therefore, the safety of JANUMET in pregnant women is not known. JANUMET should be used during pregnancy only if clearly needed. Merck & Co., Inc., maintains a registry to monitor the pregnancy outcomes of women exposed to JANUMET while pregnant. Health care providers are encouraged to report any prenatal exposure to JANUMET by calling the Pregnancy Registry at (800) 986-8999.

No animal studies have been conducted with the combined products in JANUMET to evaluate effects on reproduction. The following data are based on findings in studies performed with sitagliptin or metformin individually.

Sitagliptin. Reproduction studies have been performed in rats and rabbits. Doses of sitagliptin hugh not sense to start the sense of the sen well-controlled studies with sitagliptin in pregnant women.

Sitagliptin administered to pregnant female rats and rabbits from gestation day 6 to 20 (organogenesis) was not teratogenic at oral doses up to 250 mg/kg (rats) and 125 mg/kg (rabbits), or approximately 30 and 20 times human exposure at the maximum recommended human dose (MRHD) of 100 mg/day based on AUC comparisons. Higher doses increased the incidence of rib malformations in offspring at 1000 mg/kg, or approximately 100 times human exposure at the MRHD. Sitagliptin administered to female rats from gestation day 6 to lactation day 21 decreased body weight in male and female offspring at 1000 mg/kg. No functional or behavioral toxicity was observed in offspring of rats.

Placental transfer of sitagliptin administered to pregnant rats was approximately 45% at 2 hours and 80% at 24 hours postdose. Placental transfer of sitagliptin administered to pregnant rabbits was approximately 66% at 2 hours and 30% at 24 hours.

Metformin hydrochloride. Metformin was not teratogenic in rats and rabbits at doses up to 600 mg/kg/day. This represents an exposure of about 2 and 6 times the maximum recommender human daily dose of 2000 mg based on body surface area comparisons for rats and rabbits, respectively. Determination of fetal concentrations demonstrated a partial placental barrier to metformin

Nursing Mothers. No studies in lactating animals have been conducted with the combined components of JANUMET. In studies performed with the individual components, both sitagliptin and metformin are secreted in the milk of lactating rats. It is not known whether sitagliptin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when JANUMET is administered to a nursing woman.

Pediatric Use. Safety and effectiveness of JANUMET in pediatric patients under 18 years have not been established.

Geriatric Use. JANUMET. Because sitagliptin and metformin are substantially excreted by the kidney and because aging can be associated with reduced renal function, JANUMET should be used with caution as age increases. Care should be taken in dose selection and should be based on careful and regular monitoring of renal function *(see Warnings and Precautions)*. Sitagliptin. Of the total number of subjects (N=3884) in Phase II and III clinical studies of sitagliptin, 725 patients were 65 years and over, while 61 patients were 75 years and over. No overall differences in safety or effectiveness were observed between subjects 65 years and over and younger subjects. While this and other reported clinical experience have not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.

Metformin hydrochloride. Controlled clinical studies of metformin did not include sufficient Metromin hydrochionae. Controlled clinical studies of metromin did not include sufficient numbers of elderly patients to determine whether they respond differently from younger patients, although other reported clinical experience has not identified differences in responses between the elderly and young patients. Metformin should only be used in patients with normal renal function. The initial and maintenance dosing of metformin should be conservative in patients with advanced age, due to the potential for decreased renal function in this population. Any dose adjustment should be based on a careful assessment of renal function *Isee Contraindications: Marinag and Precautions*] [see Contraindications: Warnings and Precautions].

MERCK

JANUMET is a registered trademark of Merck & Co., Inc. Copyright ©2009 Merck & Co., Inc. Whitehouse Station, NJ 08889, USA All rights reserved. 20902022(4)(108)-JMT