## Renal Cysts a Harbinger of Aortic Dissection?

BY BRUCE JANCIN

FROM THE ANNUAL MEETING OF THE AMERICAN COLLEGE OF CARDIOLOGY

ATLANTA — Patients with a ortic dissection appear to have an increased burden of renal cysts, compared with healthy controls.

This finding in a case-control study raises the intriguing possibility that renal cysts could be a marker of increased risk for aortic dissection, Dr. Eun Kyung Kim observed at the meeting.

The mechanistic explanation for the observed association between renal cysts and aortic dissection might be that renal cysts are another manifestation of the same structural weakness of connective tissue that increases the risk of aortic dissection, according to Dr. Kim of Samsung Medical Center in Seoul, South

Dr. Kim reported on 659 patients with aortic dissection and 1,397 healthy controls who underwent multidetector CT angiography as part of routine health screening. Renal cysts were detected in 39% of the group with aortic dissection, compared with 22% of controls.

Multivariate logistic regression analysis identified several independent predictors of aortic dissection: hypertension, associated with a 10.8-fold increased risk; smoking, with a 2.2-fold risk; renal cysts, with a 1.6-fold risk; and older age.

The presence of renal cysts was linked to aortic dissection most strongly in the subgroup of normotensive subjects over age 50. In this 105-patient cohort, renal cysts were associated with a 3.4-fold increased risk of aortic dissection.

Disclosures: Dr. Kim reported having no relevant financial conflicts.

Sitagliptin Add-on Therapy in Patients with Type 2 Diabetes Inadequately Controlled on Metformin Alone. In a 24-week placebo-controlled trial of sitagliptin 100 mg administered once daily added to a twice daily metformin regimen, there were no adverse reactions reported regardless of investigator assessment of causality in ≥5% of patients and more commonly than in patients given placebo. Discontinuation of therapy due to clinical adverse reactions was similar to the placebo treatment group (sitagliptin and metformin, 1.9%; placebo and metformin, 2.5%).

Gastrointestinal Adverse Reactions. The incidences of pre-selected gastrointestinal adverse experiences in patients treated with sitagliptin and metformin were similar to those reported for patients treated with metformin alone.

Table 1: Pre-selected Gastrointestinal Adverse Reactions (Regardless of Investigator Assessment of Causality) Reported in Patients with Type 2 Diabetes Receiving Sitagliptin and Metformin

| Number of Patients (%)         |                                                                                                |                       |                                |                                              |                                                                                          |                                        |
|--------------------------------|------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------|
|                                | Study of Sitagliptin and Metformin in<br>Patients Inadequately Controlled on Diet and Exercise |                       |                                |                                              | Study of Sitagliptin Add-on in<br>Patients Inadequately Controlled<br>on Metformin Alone |                                        |
|                                | Placebo                                                                                        | Sitagliptin<br>100 mg | Metformin<br>500 mg/ Metformin | Sitagliptin 50 mg bid +<br>Metformin 500 mg/ |                                                                                          | Sitagliptin 100 mg<br>QD and Metformin |
|                                |                                                                                                | QD                    | 1000 mg bid <sup>a</sup>       | Metformin 1000 mg bid <sup>a</sup>           |                                                                                          | ≥1500 mg daily                         |
|                                | N = 176                                                                                        | N=179                 | N=364                          | N=372                                        | N=237                                                                                    | N=464                                  |
| Diarrhea                       | 7 (4.0)                                                                                        | 5 (2.8)               | 28 (7.7)                       | 28 (7.5)                                     | 6 (2.5)                                                                                  | 11 (2.4)                               |
| Nausea                         | 2 (1.1)                                                                                        | 2 (1.1)               | 20 (5.5)                       | 18 (4.8)                                     | 2 (0.8)                                                                                  | 6 (1.3)                                |
| Vomiting                       | 1 (0.6)                                                                                        | 0 (0.0)               | 2 (0.5)                        | 8 (2.2)                                      | 2 (0.8)                                                                                  | 5 (1.1)                                |
| Abdominal<br>Pain <sup>b</sup> | 4 (2.3)                                                                                        | 6 (3.4)               | 14 (3.8)                       | 11 (3.0)                                     | 9 (3.8)                                                                                  | 10 (2.2)                               |

\*Data pooled for the patients given the lower and higher doses of metformin.

\*Abdominal discomfort was included in the analysis of abdominal pain in the study of initial therapy.

Sitagliptin in Combination with Metformin and Glimepiride. In a 24-week placebo-controlled study of sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metformin and glimepiride (sitagliptin, N=116; placebo, N=113), the adverse reactions reported regardless of investigator assessment of causality in  $\geq$ 5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: hypoglycemia (sitagliptin, 16.4%; placebo, 0.9%) and headache (6.9%, 2.7%).

placebo, 0.9%) and headache (6.9%, 2.7%).

Sitagliptin in Combination with Metformin and Rosiglitazone. In a placebo-controlled study of sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metformin and rosiglitazone (sitagliptin, N=181; placebo, N=97), the adverse reactions reported regardless of investigator assessment of causality through Week 18 in ≥5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: upper respiratory tract infection (sitagliptin, 5.5%; placebo, 5.2%) and nasopharyngitis (6.1%, 4.1%). Through Week 54, the adverse reactions reported regardless of investigator assessment of causality in ≥5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: upper respiratory tract infection (sitagliptin, 15.5%; placebo, 6.2%), nasopharyngitis (11.0%, 9.3%), peripheral edema (8.3%, 5.2%), and headache (5.5%, 4.1%).

Sitagliptin in Combination with Metformin and Insulin In a 24-week placebo-controlled study of sitagliptin 100 mg centrolled study of sit Sitagliptin in Combination with Metformin and Insulin. In a 24-week placebo-controlled study of sitagliptin 100 mg as add-on therapy in patients with type 2 diabetes inadequately controlled on metformin and insulin (sitagliptin, N=229; placebo, N=233), the only adverse reaction reported regardless of investigator assessment of causality in ≥5% of patients treated with sitagliptin and more commonly than in patients treated with placebo was hypoglycemia. *Hypoglycemia*. In all (N=5) studies, adverse reactions of hypoglycemia were based on all reports of symptomatic hypoglycemia; a concurrent glucose measurement was not required although most (77%) reports of hypoglycemia were accompanied by a blood glucose measurement  $\leq$ 70 mg/dL. When the combination of sitagliptin and metformin was co-administered with a sulfonylurea or with insulin, the percentage of patients reporting at least one adverse reaction of hypoglycemia was higher than that observed with placebo and metformin co-administered with a sulfonylurea or with

Insulin.

The overall incidence of reported adverse reactions of hypoglycemia in patients with type 2 diabetes inadequately controlled on diet and exercise was 0.6% in patients given placebo, 0.6% in patients given sitagliptin alone, 0.8% in patients given metformin alone, and 1.6% in patients given sitagliptin in combination with metformin. In patients with type 2 diabetes inadequately controlled on metformin alone, the overall incidence of adverse reactions of hypoglycemia was 1.3% in patients given add-on sitagliptin and 2.1% in patients given add-on placebo.

In the study of sitagliptin and add-on combination therapy with metformin and rosiglitazone, the overall incidence of hypoglycemia was 2.2% in patients given add-on sitagliptin and 0.0% in patients given add-on placebo through Week 18. Through Week 54, the overall incidence of hypoglycemia was 3.9% in patients given add-on sitagliptin and 1.0% in patients given add-on placebo.

patients given add-on placebo

With the combination of sitagliptin and metformin, no clinically meaningful changes in vital signs or in ECG (including in QTc interval) were observed.

The most common adverse experience in sitagliptin monotherapy reported regardless of investigator assessment of

causality in ≥5% of patients and more commonly than in patients given placebo was nasopharyngitis.

The most common (>5%) established adverse reactions due to initiation of metformin therapy are diarrhea, nausea/vomiting, flatulence, abdominal discomfort, indigestion, asthenia, and headache.

Laboratory Tests

Sitagliptin. The incidence of laboratory adverse reactions was similar in patients treated with sitagliptin and metformin (7.6%) compared to patients treated with placebo and metformin (8.7%). In most but not all studies, a small increase in white blood cell count (approximately 200 cells/microL difference in WBC vs. placebo; mean baseline WBC approximately 6600 cells/microL) was observed due to a small increase in neutrophils. This change in laboratory parameters is not considered to be clinically relevant.

Metformin hydrochloride. In controlled clinical trials of metformin of 29 weeks duration, a decrease to subnormal levels of previously normal serum Vitamin  $B_{12}$  levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with  $B_{12}$  absorption from the  $B_{12}$ -intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of metformin or Vitamin  $B_{12}$  supplementation [see Warnings and Precautions].

Postmarketing Experience. The following additional adverse reactions have been identified during postapproval use of JANUMET or sitagliptin, one of the components of JANUMET. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Hypersensitivity reactions include anaphylaxis, angioedema, rash, urticaria, cutaneous vasculitis, and exfoliative skin conditions including Stevens-Johnson syndrome [see Warnings and Precautions]; upper respiratory tract infection; hepatic enzyme elevations; acute pancreatitis, including fatal and non-fatal hemorrhagic and necrotizing pancreatitis [see Limitations of Use; Warnings and Precautions].

## DRUG INTERACTIONS

Cationic Drugs. Cationic drugs (e.g., amiloride, digoxin, morphine, procainamide, quinidine, quinine, ranitidine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular secretion theoretically have the potential for interaction

with metformin by competing for common renal tubular transport systems. Such interaction between metformin and oral with merioninh by competing for common renar touting transport systems, such interaction between merioninh and oral cimetidine has been observed in normal healthy volunteers in both single- and multiple-dose metformin-cimetidine drug interaction studies, with a 60% increase in peak metformin plasma and whole blood concentrations and a 40% increase in plasma and whole blood metformin AUC. There was no change in elimination half-life in the single-dose study. Metformin had no effect on cimetidine pharmacokinetics. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of JANUMET and/or the interfering drug is recommended in patients who are taking cationic medications that are excreted via the proximal renal tubular secretory system.

**Digoxin.** There was a slight increase in the area under the curve (AUC, 11%) and mean peak drug concentration ( $C_{max}$ , 18%) of digoxin with the co-administration of 100 mg sitagliptin for 10 days. These increases are not considered likely to be clinically meaningful. Digoxin, as a cationic drug, has the potential to compete with metformin for common renal tubular transport systems, thus affecting the serum concentrations of either digoxin, metformin or both. Patients receiving digoxin should be monitored appropriately. No dosage adjustment of digoxin or JANUMET is recommended.

Glyburide. In a single-dose interaction study in type 2 diabetes patients, co-administration of metformin and glyburide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glyburide AUC and  $C_{\text{max}}$  were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects make the clinical significance of this interaction uncertain. Furosemide. A single-dose, metformin-furosemide drug interaction study in healthy subjects demonstrated that pharmacokinetic

parameters of both compounds were affected by co-administration. Furosemide increased the metformin plasma and blood Cmax by 22% and blood AUC by 15% without any significant obease is matter. parameters of both compounds were affected by co-administration. Furosemide increased the interformin plasma and blood  $C_{max}$  by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with metformin, the  $C_{max}$  and AUC of furosemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in furosemide renal clearance. No information is available about the interaction of metformin and furosemide when co-administered chronically.

**Nifedipine.** A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that co-administration of nifedipine increased plasma metformin  $C_{\text{max}}$  and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. T<sub>max</sub> and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin. Metformin had minimal effects on nifedipine.

The Use of Metformin with Other Drugs. Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving JANUMET the patient should be closely observed to maintain adequate glycemic control.

In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when co-administered in single-dose interaction studies.

Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins.

## USE IN SPECIFIC POPULATIONS

Pregnancy. Pregnancy Category B.

JANUMET. There are no adequate and well-controlled studies in pregnant women with JANUMET or its individual components; therefore, the safety of JANUMET in pregnant women is not known. JANUMET should be used during pregnancy only if clearly needed.

Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., maintains a registry to monitor the pregnancy outcomes of women exposed to JANUMET while pregnant. Health care providers are encouraged to report any prenatal exposure to JANUMET by calling the Pregnancy Registry at (800) 986-8999.

No animal studies have been conducted with the combined products in JANUMET to evaluate effects on reproduction. The following data are based on findings in studies performed with sitagliptin or metformin individually. Sitagliptin. Reproduction studies have been performed in rats and rabbits. Doses of sitagliptin up to 125 mg/kg (approximately 12 times the human exposure at the maximum recommended human dose) did not impair fertility or harm the fetus. There are, however, no adequate and well-controlled studies with sitagliptin in pregnant women Sitagliptin administered to pregnant female rats and rabbits from gestation day 6 to 20 (organogenesis) was not teratogenic at oral doses up to 250 mg/kg (rats) and 125 mg/kg (rabbits), or approximately 30 and 20 times human exposure at the maximum recommended human dose (MRHD) of 100 mg/day based on AUC comparisons. Higher doses increased the incidence of rib malformations in offspring at 1000 mg/kg, or approximately 100 times human exposure at the MRHD. Sitagliptin administered to female rats from gestation day 6 to lactation day 21 decreased body weight in male and female offspring at 1000 mg/kg. No functional or behavioral toxicity was observed in offspring of rats. Placental transfer of sitagliptin administered to pregnant rats was approximately 45% at 2 hours and 80% at 24 hours postdose. Placental transfer of sitagliptin administered to pregnant rabbits was approximately 66% at 2 hours and 30%

Metformin hydrochloride. Metformin was not teratogenic in rats and rabbits at doses up to 600 mg/kg/day. This represents an exposure of about 2 and 6 times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons for rats and rabbits, respectively. Determination of fetal concentrations demonstrated a partial placental barrier

Nursing Mothers. No studies in lactating animals have been conducted with the combined components of JANUMET. In studies performed with the individual components, both sitagliptin and metformin are secreted in the milk of lactating rats. It is not known whether sitagliptin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when JANUMET is administered to a nursing woman.

Pediatric Use. Safety and effectiveness of JANUMET in pediatric patients under 18 years have not been established **Geriatric Use.** JANUMET. Because sitagliptin and metformin are substantially excreted by the kidney and because aging can be associated with reduced renal function, JANUMET should be used with caution as age increases. Care should be taken in dose selection and should be based on careful and regular monitoring of renal function [see Warnings and Precautions; Clinical Pharmacology].

Sitagliptin. Of the total number of subjects (N=3884) in Phase II and III clinical studies of sitagliptin, 725 patients were 65 years and over, while 61 patients were 75 years and over. No overall differences in safety or effectiveness were observed between subjects obet, while of pental state of Syears and over and younger subjects. While this and other reported clinical experience have not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.

Metformin hydrochloride. Controlled clinical studies of metformin did not include sufficient numbers of elderly patients to

determine whether they respond differently from younger patients, although other reported clinical experience has not identified differences in responses between the elderly and young patients. Metformin should only be used in patients with normal renal function. The initial and maintenance dosing of metformin should be conservative in patients with advanced age, due to the potential for decreased renal function in this population. Any dose adjustment should be based on a careful assessment of renal function [see Contraindications; Warnings and Precautions; Clinical Pharmacology].

JANUMET is a registered trademark of Merck Sharp & Dohme Corp., a subsidiary of **Merck & Co., Inc.**Copyright © 2010 Merck Sharp & Dohme Corp., a subsidiary of **Merck & Co., Inc.** All rights reserved.
21001563(5)(500)-JAN

Janumet.com