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D ifferences in bone size are established early in life, 
before puberty and perhaps even in utero.1 Bone be-
gins to form when mesenchy-

mal cells form condensations—clusters 
of cells that adhere through expression 
of adhesion molecules2 (Figure 1). Bone 
must be stiff, flexible enough to change 
shape to absorb energy, and light enough 
to allow mobility.1,3 Longitudinal bone 
growth is detrimental to bone stability, 
but this effect is counteracted by con-
comitant bone growth in width.4 Bone 
growth in width has not been studied 
as extensively, despite its paramount role 
in skeletal development.5

Bone growth and development are 
products of the complex interactions of 
genetic and environmental factors, in-
cluding diet, hormones, and mechanical 

stimuli.6-9 Longitudinal bone growth is controlled by systemic 
and local hormones and local mechanical factors. Two models 
for control of bone growth in width have been suggested—
the mechanostat theory (mechanical requirements regulate 
periosteal apposition) and the sizostat hypothesis (a master 
gene or set of genes regulates bone growth in width so bone 
reaches a preprogrammed size, independent of mechanical 
requirements).5

In this article, we review the most recent data regarding 
bone growth from the embryonic age and analyze the factors 
that control bone growth. An understanding of this complex 
system is important in identifying metabolic and developmen-
tal bone diseases10 and fracture risk.11,12

Growth Plate
The growth plate consists mainly of collagen fibrils, proteogly-
cans, and water, arranged to form a sort of sponge with very 
small pores.13 The growth plate is located between epiphyseal 
and metaphyseal bone at the distal end of long bones14 and 
is strain-rate–dependent,15,16 which means it is hard when 
squeezed rapidly but soft when deformed slowly. The growth 
plate becomes ossified after puberty and epiphyseal fusion.17

Histologically, the growth plate consists of horizontal zones 
of chondrocytes at different stages of differentiation.4 The ger-
minal zone, at the epiphyseal end of the growth plate, contains 
resting chondrocytes, which seem crucial in orienting the 
underlying columns of chondrocytes and, therefore, in uni-

directional bone growth, probably by 
secretion of a growth plate–orienting 
factor.14,18 Next is the proliferative zone, 
a matrix-rich zone in which flattened 
chondrocytes undergo longitudinal cell 
division and orient themselves in typi-
cal column-wise fashion. At some point, 
proliferating chondrocytes lose their ca-
pacity to divide; they start to differenti-
ate and become prehypertrophic, coin-
ciding with a size increase.4 Proliferating 
chondrocytes are located in the transi-
tion (maturation or prehypertrophic) 
zone. In the hypertrophic zone, round 
chondrocytes secrete matrix proteins 
in large amounts.14 This stage is char-
acterized by an increase in intracellu-
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Figure 1. Longitudinal section of primary 
center of ossification in humerus of 14-
week fetus shows numerous osteoblasts 
in cambium of periosteum as well as new 
bone formed in center (hematoxylin-eosin, 
original magnification ×200).
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lar calcium concentration, which is essential 
in the production of matrix vesicles. These 
vesicles, small membrane-enclosed particles, 
are released from chondrocytes19,20 and secrete 
calcium phosphates, hydroxyapatite, and ma-
trix metalloproteinases, resulting in mineral-
ization of the vesicles and their surrounding 
matrix.4 The chondrocytes in this mineralized 
zone eventually undergo programmed cell 
death (apoptosis), leaving a scaffold for new 
bone formation.

Longitudinal Bone Growth
Generally, bones increase in length as long as 
new material is being squeezed between the 
reserve zone of the growth plate and the zone 
of provisional calcification.4

Postnatal linear growth occurs in 3 phas-
es. Phase 1 is characterized by a high rate of 
growth at the beginning of fetal life, and then 
rapid deceleration up to about 3 years; phase 
2, by a lower, slowly decelerating growth rate 
up to puberty; and phase 3, by an increased 
rate of longitudinal growth until a peak is reached.14,21,22

In 1964, Park23 proposed that the structure of the epiphyseal 
cartilage may determine the pattern of the growing bone shaft. 
The changes within the hypertrophic zone are directly related 
to matrix mineralization, vascular invasion, and subsequent 
development.24 Intracellular calcium concentration increases 
in the hypertrophic chondrocytes in the hypertrophic zone 
of growth plate cartilage; at some point, these chondrocytes 
begin to mineralize the longitudinal septa in the surrounding 
matrix25 (Figure 2). At the growth cartilage junction, mono-
nuclear cells of undetermined origin resorb the unmineralized 
horizontal septa of the growth cartilage. These cells are called 
septoclasts or chondroclasts.25,26 Blood vessels invade the area and 
pave the way for bone cell precursors.27 Eighty percent of the 
longitudinal septa of the growth cartilage is rapidly resorbed 

in the metaphyseal zone immediately behind 
the invading blood vessels, paving the way 
for bone cell precursors.28 Fazzalari and col-
leagues28 reported that about 40% of mineral-
ized septa serves as scaffold for the formation 
of primary bone trabeculae; the other 60% is 
absorbed by chondroclasts (osteoclasts) near 
the vascular invasion front.

Regulation of Longitudinal Bone Growth
Longitudinal bone growth is regulated by ge-
netic, hormonal, growth, and environment 
factors17,29-31 (Table). It must be controlled on 
at least 3 different levels.4 Level 1 is systemic 
control by factors such as growth hormone 
(GH), sex hormones, and glucocorticoids. The 
major systemic hormones that control longi-
tudinal bone growth during childhood are 
GH, insulin-like growth factor 1 (IGF-1), the 
thyroid hormones triiodothyronine (T

3
) and 

thyroxine (T
4
), and glucocorticoids; during 

puberty, the sex steroids play the most signifi-
cant role.14 Level 2 is local control by factors 

such as Indian hedgehog (Inh), parathyroid hormone–related 
peptide (PTHrP), and fibroblast growth factors (FGFs).14,31 Level 
3 is mechanical control.4

Systemic Regulation. After birth, GH becomes an im-
portant modulator of longitudinal growth and appears to 
be, together with IGF-1, the central player in the hypothala-
mus–pituitary–growth plate axis.14 According to the original 
somatomedin hypothesis,32 GH stimulates hepatic produc-
tion of IGF-1, which in turn promotes growth directly at the 
epiphyseal plate.17 GH acts on resting zone chondrocytes and 
is responsible for local IGF-1 production, which stimulates 
clonal expansion of proliferating chondrocytes in an auto-
crine/paracrine manner.33 Infusion of GH or IGF-1 shortens 
stem- and proliferating-cell cycle times in the growth plate 
of hypophysectomized rats and decreases the duration of the 

Table. Factors Affecting Bone Growth

Factors Affecting:

Longitudinal Bone Growth Bone Growth in Width

Positively Negatively Positively Negatively

Growth hormone
Insulin-like growth factor 1

Triiodothyronine
Thyroxine

Androgens
Indian hedgehog

Fibroblast growth factors
Bone morphogenetic proteins

Vascular endothelial growth factors
Tension

Compression (to a certain level)
Innervation

Glucocorticoids
Estrogens

Parathyroid hormone–related peptide
Compression (after a certain level)

Androgens
Parathyroid hormone

Mechanical forces

Estrogens

Figure 2. Longitudinal section 
of adult femoral bone lined 
by articular cartilage shows 
tide mark separating articu-
lar nonmineralized cartilage 
from mineralized cartilage and 
lamellar bone of subchondral 
plate (hematoxylin-eosin, origi-
nal magnification ×200).
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hypertrophic differentiation phase, with GH being more ef-
fective.17 According to the experimental study of Hunziker 
and colleagues,34 GH or IGF-1 treatment restores mean cell 
volume and height, but the growth rate is not normalized by 
either hormone.

Thyroid hormones also play a vital role in bone growth. T
3
 

and, to a lesser extent, T
4
 are crucial in normal bone matura-

tion.30,35 Childhood hypothyroidism causes growth failure; 
growth failure may develop insidiously, but, once established, 
it is severe.17 On the other hand, hyperthyroidism increases the 
growth rate in children but also leads to premature growth 
plate fusion and short stature.36,37 T

3 
seems to stimulate recruit-

ment of cells from the germinal zone to the proliferating zone 
and facilitates differentiation of growth plate chondrocytes.38-40 
Its precursor, T

4
, increases the number of [3H]methylthymi-

dine-labeled chondrocyte nuclei and [35S]incorporation in Snell 
dwarf mice growth plates, suggesting a stimulatory role in 
chondrocyte proliferation and differentiation.41

Glucocorticoids suppress growth by modifying the GH/
IGF-1 pathway at different levels.17 Silvestrini and colleagues42 
localized the glucocorticoid receptor in rat bone cells, in-
cluding chondrocytes. The glucocorticoid receptor was also 
localized by Abu and colleagues43 in human growth plates, 
especially in hypertrophic chondrocytes, suggesting direct 
effects of glucocorticoids on the growth plate. An excess of 
glucocorticoids enhances bone resorption, inhibits osteoblast 
activity, and reduces bone matrix production to retard growth 
in children.44,45 Excess glucocorticoids also induce apoptosis 
of osteoblasts and osteocytes in rabbit trabecular bone46 and 
osteoblasts in rat long bones,47 resulting in an almost complete 
absence of new bone formation.17 In addition, glucocorticoids 
induce sex hormone deficiency and alter vitamin D metabo-
lism, leading to deleterious effects on growth and skeletal in-
tegrity.48 Excess glucocorticoids modify the GH/IGF-1 pathway 
at different levels, suppressing growth.17 In contrast, low levels 
of glucocorticoids, as in familial glucocorticoid deficiency, are 
associated with tall stature.49

Longitudinal bone growth is also based on sex hormones, 
especially during puberty.17 In rats, estrogen depletion stimu-
lates longitudinal growth, whereas estrogen administration 
inhibits longitudinal growth.50-52 Nilsson and colleagues53 
studied ovariectomized immature rabbits treated with either 
estrogen or the selective estrogen receptor modulator raloxi-
fene and found reduced chondrocyte proliferation and growth 
plate height as well as accelerated growth plate senescence. 
Many experimental studies have concluded that estrogen can 
inhibit longitudinal growth in the absence of GH.51,54,55

Androgens can directly influence growth plate function and 
may account for some skeletal differences between males and 
females.56-58 Unlike estrogens, androgens stimulate longitudi-
nal growth, as shown in several studies that assessed the effect 
of administering nonaromatizable androgens on longitudinal 
growth in boys with constitutionally delayed growth.59,60

Local Regulation. Inh, a master regulator of bone devel-
opment, coordinates chondrocyte proliferation, chondrocyte 
differentiation, and osteoblast differentiation.31 Inh belongs to 

the hedgehog protein family, which plays a crucial role in em-
bryonic patterning and development.4 The proliferative effect 
of Inh is likely to be direct action on chondrocytes.31 In 1996, 
Vortkamp and colleagues61 reported that misexpression of Inh 
in chicken long bones blocked chondrocyte differentiation. 
More recently, St-Jacques and colleagues62 studied Inh-null 
mutant mice and found failure of both chondrocyte differ-
entiation and osteoblast development. Inh is now thought to 
coordinate endochondral ossification, regulating chondrocyte 
proliferation and differentiation and osteoblast differentiation 
and coupling chondrogenesis and osteogenesis.62,63

PTHrP acts primarily to keep proliferating chondrocytes 
in the proliferative pool.31 Mice that did not express PTHrP 
showed accelerated chondrocyte differentiation leading to 
dwarfism.64 On the other hand, ectopic expression of PTHrP in 
the growth plate inhibited chondrocyte differentiation, result-
ing in a smaller cartilaginous skeleton compared with wild-
type mice.65 PTHrP appears to regulate the rate of programmed 
chondrocyte differentiation in developing endochondral bone 
and at the level of the growth plate.64,66-69

The family of FGFs, which are major regulators of embry-
onic bone development, has at least 22 members.70,71 Achon-
droplasia, the most common type of dwarfism, is caused by 
an activating mutation in FGF receptor 3 (FGFR3).72-74 FGF18 
deficiency also leads to delayed ossification and decreased ex-
pression of osteogenic markers.75

Bone morphogenetic proteins (BMPs) are recognized as 
important regulators of growth, differentiation, and morpho-
genesis during embryology.76 In 2001, Minina and colleagues77 

showed that normal chondrocyte proliferation requires paral-
lel signaling of both Inh and BMPs and that BMPs can inhibit 
chondrocyte differentiation independently of the Inh/PTHrP 
pathway.

Vascular endothelial growth factor (VEGF), a chemoattrac-
tant for endothelial cells, is one of the most important growth 
factors for endothelial cells.78 VEGF is a key player in the ac-
tions that occur during the end stage of endochondral bone 
formation; these actions include terminal differentiation of 
chondrocytes, vascular invasion, chondrocyte apoptosis, and 
replacement of chondrocytes with bone.27,79,80 When Gerber 
and colleagues27 inactivated VEGF in 24-day-old mice, they 
noticed suppressed blood vessel invasion and trabecular bone 
formation concomitant with an increased width of the hy-
pertrophic zone.

Mechanical Regulation. Mechanical forces influence bone 
formation and adaptation.81 Growth rates from early infancy 
through late adolescence were found to be strongly correlated 
between an appropriate measure of mechanical loading (body 
size, or body weight–bone length) and bone strength (assessed 
by section modulus).82 The observation that compression in-
hibits bone growth was well known to the ancient Romans.83 
In the 19th century, the Hueter-Volkmann law was proclaimed. 
This law is well known to pediatric orthopedic surgeons and 
is the basis of growth modulation for correcting angular de-
formities of the lower extremities and spinal deformities.4,84

If compression always inhibited bone growth, as it was 

AJO 
DO NOT COPY



Factors Affecting Bone Growth

64    The American Journal of Orthopedics®  February 2015� www.amjorthopedics.com

I. Gkiatas et al

believed, growth plates would be extremely unstable, as any 
slight deviation from the straight alignment of the long bones 
of the lower extremities would induce a vicious circle of pos-
itive feedback and result in catastrophic deformities.4 Mild 
compression leads to increased, not decreased, growth. Nev-
ertheless, when compression on one side of the growth plate 
exceeds a certain level, growth is indeed suppressed, and the 
lesion begins to worsen.4

In 1997, Frost85 proposed using a single graph that combines 
the clinical observation of mechanical forces affecting longi-
tudinal bone growth. Both mild tension and mild compres-
sion induce bone growth, whereas heavy compression inhibits 
growth (Figure 3). 

Three rules describe bone adaptation in mathematical 
terms. First, bone adaptation is driven by dynamic, not static, 
loading. Second, only a short period of mechanical loading is 
needed to initiate an adaptive response (extending the loading 
period has a diminishing effect on further bone adaptation). 
Third, bone cells accommodate to a customary mechanical 
loading environment, making them less responsive to routine 
loading signals.81

Also playing a significant role in bone physiology is the 
nervous system, with leptin-dependent central control of bone 
formation via the sympathetic system.86 Several investigators 
have tried to determine the effect of muscle activity on bone 
growth in length.87 Pottorf88 in 1916 and Allison and Brooks89 
in 1921 were among the first to study this correlation; they 
concluded that long bones grow less after denervation. On 
the other hand, Ring90 in 1961 reported that, despite innerva-
tion, longitudinal bone growth was increased. Investigators in 
more recent studies have advanced the idea that the nervous 
system plays a negative role in bone physiology. Dysart and 
colleagues87 showed that muscle pull affects periosteal ten-
sion and, consequently, bone form and growth in length. In 
a clinical study involving 32 children with neonatal brachial 
plexus injury,91 the ratio of skewness between the affected hu-
meral head and the contralateral normal head was calculated. 
Skewness was determined by dividing the anterior area of the 
humeral head by the posterior area. There was a significant 

preoperative difference between the 2 sides, but the skewness 
ratio was significantly improved after surgery.

Bone Growth in Width
Bone growth in width has not received as much attention as 
longitudinal bone growth. Several studies have indicated that 
body mass and muscle strength have important influences on 
long bone strength in children and adolescents.92-97 As bone 
width changes only slowly after the growth period, bone 
growth in width is one of the most important determinants 
of bone strength throughout life.4 It is clear that, if bones grew 
in length without increasing in width, they would become 
unstable and break.4

Histologically, osteoblasts add mineralized tissue to the 
outer (periosteal) bone surface. This process is periosteal apposi-
tion.98 The periosteum has an outer layer, composed mainly of 
fibrous tissue, and an inner layer, the cambium, which harbors 
osteogenic cells.4 In children, bone formation is continuous, 
which is the hallmark of modeling99,100; in adults, periosteal 
bone may undergo cyclical resorption and formation, which 
are characteristic of remodeling.101,102

Macroscopically, bone grows rapidly during early life; then, 
growth continuously slows down until reaching a nadir dur-
ing early school age.4 It is clear that wider bones must have 
higher midshaft periosteal apposition rates, as this is how they 
become wider.4,103

Regulation of Bone Growth in Width (Table)
Systemic Regulation. Periosteal apposition at diaphyseal bone 
sites is stimulated by androgen and GH and inhibited by estro-
gens.104-106 In an experimental study, Turner and colleagues104 
found that androgen treatment stimulated bone formation in 
orchiectomized rats and suppressed bone formation in ovariec-
tomized rats. A large dose of diethylstilbestrol also suppressed 
bone formation in ovariectomized rats. Parathyroid hormone is 
associated with faster periosteal expansion in adults, according 
to Parfitt.107 In addition, nutrition with high calcium intake has 
the same effects on children, especially those with high levels 
of physical activity.108

Local Regulation. Given that periosteal bone development 
is site-specific, whereas systemic hormones and nutrition are 
blind to structure,4 it is clear that local regulation is key to 
bone growth in width. Genetic heritage seems to have an 
overwhelming effect on periosteal bone development. Volk-
man and colleagues,109 who experimented with various genetic 
markers in rats, concluded that genetic control of cortical bone 
geometry is complex and that femoral size and shape may be 
influenced by different but overlapping groups of polymor-
phic loci.

Mechanical Regulation. Mechanical forces seem to be very 
important in determining bone width. For example, the differ-
ence in width between femur and humerus can be explained 
by the different mechanical forces acting on each bone. This 
perspective is supported by Ruff,82 who showed that the cor-
relation of body size (body weight–bone length) and bone 
strength is stronger in the femur than in the humerus.
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Figure 3. Frost graph.
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The vital role of mechanical forces in bone growth in width 
is also supported by results of a study by Goodship and col-
leagues,110 who overloaded the radius of young pigs by partially 
removing the ulna. They showed that the radius was strength-
ened by rapid periosteal apposition. This effect has also been 
noticed in the clinical setting, when the tibia is replaced with 
the fibula, which quickly hypertrophies in order to resemble 
the tibia.111

Conclusion
Longitudinal bone growth has been extensively studied. Sys-
temic and local hormonal pathways control bone growth in 
a complicated regulation system. Mechanical loading is also 
strongly correlated with longitudinal bone growth. Bone 
growth in width has received less attention. Despite its impor-
tance in bone stability, periosteal development—and periosteal 
apposition and resorption more specifically—has not received 
enough attention. Researchers need to clarify the role of genetic 
factors affecting periosteal development.
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